On the non-existence of higher order monotone approximation schemes for HJB equations

نویسندگان

  • Igor Kossaczký
  • Matthias Ehrhardt
  • Michael Günther
چکیده

In this work we present a result on the non-existence of monotone, consistent linear discrete approximation of order higher than 2. This is an essential ingredient, if we want to solve numerically nonlinear and particularly Hamilton-Jacobi-Bellman (HJB) equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order filtered schemes for time-dependent second order HJB equations

In this paper, we present and analyse a class of “filtered” numerical schemes for second order Hamilton-Jacobi-Bellman (HJB) equations. Our approach follows the ideas recently introduced in B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation, SIAM J. Numer. Anal., 51(1):423–444, 2013, and more recently applied by other authors to stationa...

متن کامل

Numerical Solution of Discretised HJB Equations with Applications in Finance

We consider the numerical solution of discretised Hamilton-Jacobi-Bellman (HJB) equations with applications in finance. For the discrete linear complementarity problem arising in American option pricing, we study a policy iteration method. We show, analytically and numerically, that, in standard situations, the computational cost of this approach is comparable to that of European option pricing...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data

We prove the convergence of a non-monotonous scheme for a one-dimensional first order Hamilton-Jacobi-Bellman equation of the form vt+maxα(f(x, α)vx) = 0, v(0, x) = v0(x). The scheme is related to the HJB-UltraBee scheme suggested in [7]. We show for general discontinuous initial data a first-order convergence of the scheme, in L-norm, towards the viscosity solution. We also illustrate the non-...

متن کامل

Error Bounds for Monotone Approximation Schemes for Non-convex Degenerate Elliptic Equations in R

In this paper we provide estimates of the rates of convergence of monotone approximation schemes for non-convex equations in one spacedimension. The equations under consideration are the degenerate elliptic Isaacs equations with x-depending coefficients, and the results applies in particular to finite difference methods and control schemes based on the dynamic programming principle. Recently, K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2016